MATH 732: CUBIC HYPERSURFACES

DAVID STAPLETON

1. SOME CLASSICAL CONSTRUCTIONS

These notes are based on [Huy23, §1.5]. See the disclaimer section.

Example 1.1. Given a smooth cubic hypersurface:
XcpPl=P

we “saw in an exercise” that the maximum dimension of a linear subspace
A € X is n/2. Tt is not too hard to give examples with equality. For
example, when n is even the Fermat cubic:

X=(zd+ad+-a3+23,,=0)cP
contains the linear subspace:
A=(zo+x1 =20+ 13=2,+Tp1 =0).

This has codimension n/2 + 1 in P (so has dimension n/2). When n is
odd, X contains the (n-1)/2 plane

(zo+x1 =" =Ty 1+Tp=Tp1 =0)cX.

Example 1.2. If P = P(V) and A = P(WW), then the rational map linear
projection from A
g P ->P(V /W) =P’

is induced by the linear quotient gy: V' — V /TV and sends a one-dimensional
subspace A €V ~ ¢(\) as long as A ¢ W. Le. the base locus of this map
is A € P. For a one-dimensional subspace A € P \ A, the closure of the
fiber of gy at A is the linear subspace P(W + \) ¢ P. Likewise, any linear
subspace of P having dimension dim(A)+1 that contains A is the closure
of a fiber of py. The closure of the graph of py:

rcPxP(V/W).
is the blow-up of P at A. If u:T' - P is the blow-up map, then the

projection:

I - P(V/W)
1
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is associated to the complete linear system |*Op(1)® Op(-FE)|. The map
¢:T' > P(V /W) corresponds to the projective bundle:

I = P(Opqvyw)(1) ® OZE0).

2}

et

For a smooth cubic hypersurface X = (F = 0) containing A, the cubic
equation pulls back to a section

i F e H(T, 17 0(3)).
As X has multiplicity 1 along A, so u*F gives rise to a section of
pwFeH(T, 1*0(3) @ O(-F)).

This corresponds to the blowing up of X at A. From the perspective of
the projective bundle ¢, this gives a section of

04(2) ® ¢* (Opvyw) (1)),

which is to say that p* F' is a family of quadrics in the fiber of I'. Explicitly,
given a dim(A) + 1 plane Pi containing A, we know that (if IT meets X
properly) IT meets X at a degree 3 hypersurface in II:

MnX=QnuAcll

The quadric Qp is called the residual quadric.
If we let € = Op/(1) @ O8I W then ¢, yu* ' gives a section of Sym*(€)(1),
or equivalently a symmetric homomorphism:

G F:E > E(1).

We have shown that X is birationally a quadric bundle over P(V/WW).
The singular fibers correspond to when the map ¢, u* F' becomes singular,
which is when det(¢.p*F) = 0. This is a section of the line bundle

det(&) ® det(E(1)) = det(E)? ® Op (dim W +1) ~ Op: (dim W + 3).
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Example 1.3. If we project from a point on a smooth cubic hypersurface
(so dimW = 1) this gives a double cover of P(V/W') that is branched
along a degree 4 hypersurface. (Likewise, if we project from a line this
gives a conic bundle over P(V /W) that is branched along a quintic.)

y

Exercise 1. Let
X=(a3++23,,=0)cP
be an even dimensional Fermat cubic hypersurface and let
A=(xg+m1 ==, +2y1=0)cP.

Show that the corresponding quadric fibration is singular along the union
of nf/2+ 1 hyperplanes and the cubic hypersurface:

Xn(zg—xy =y —Tpy1 =0)
thought of as a subset of P™/2.

Example 1.4. If P2 ~ A ¢ X ¢ P% is a cubic fourfold that contains a
plane then we can use quadric fibration to prove that X is unirational
(i.e. X admits a dominant map from projective space). To do this, we
choose an auxiliary P? ¢ P°. This meets X at a smooth, rational cubic
surface, which double covers P’. The base change of the quadric bundle to
the cubic surface is rational because it’s a quadric bundle over a rational
surface with a point. This gives a degree 2 unirational parametrization.

Example 1.5 (Rational Hypersurfaces). If X is a smooth, even dimen-
sional cubic hypersurface of dimension n that contains two complemen-
tary n/2-dimensional linear subspaces A, Ay € X that span P, then X is
even rational! The third point map:

Al X A2 > X
where a pair of points (A1, A2) maps to the third point on the line A \ynX.



4 DAVID STAPLETON

Example 1.6 (A general unirationality construction). We know cubic
surfaces are rational. This lets us inductively prove cubic hypersurfaces
are rational. Consider a smooth cubic hypersurface X with two hyper-
plane sections Y; and Y5. Then the third point map

YixY,-> X

gives a dominant map to X. As Y; and Y, are unirational, the product is
also unirational, which does the job.

Example 1.7 (Rationality of nodal cubics). Suppose that X ¢ P is a
reduced, irreducible cubic with a double point. Projection from this point
gives a map

X ->P"
of degree 1, which shows the cubic is rational. We can likewise parametrize
the points on a cubic via a third point construction. Let P* ~ Il ¢ P be
a linear subspace that does not contain the double point p € X. Then,
there is a rational map:

Im--X

that sends a point y €Il to the final point on the line py n X.

—_

Moreover, if p e X = (F =0) is an ordinary double point and is the only
singular point, we can understand what gets contracted by the birational
map X -> P". For simplicity assume that p=[0:---:0: 1] € P. Then, we
can expand the equation F' as

F=Q(xo,...,x3)Tni1 + G(x0,...,2,)

where Q(zg, -+, z,) is a non-degenerate quadric and G is a homogeneous
equation in one fewer variables. (Note that z,.1 # 0 at p.) The complete
intersection D = (Q = G = 0) is a divisor in X, which is a cone over a
subvariety in P? = (z,,; = 0). The assumption that X is smooth away
from p implies this complete intersection is smooth in P7. If

X' cPxP"
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is the graph of this birational map then the projection X’ — P" corre-
sponds to the blow-up of the (2,3) complete intersection variety, and the
projection X’ — P corresponds to the contraction of the quadric () = 0.
To be more explicit: let X be a cubic with a unique singularity that is an

ODP:

(1) If X is a surface, then it corresponds to the blow-up of 6 points
in P? that are the intersection of a conic and a cubic, followed by
the contraction of the conic.

(2) If X is a cubic threefold, then it corresponds to the blow-up of a
canonical genus 4 curve C' ¢ P?3 followed by the contraction of the
unique conic that contains it.

(3) If X is a cubic fourfold, then it corresponds to the blow-up of
a (2,3) complete intersection K3 surface S ¢ P4, followed by the
contraction of the unique quadric containing it.

Example 1.8. It is also interesting to ask: What is the maximal number o
of ordinary double points a cubic hypersurface can have? Roughly speak-
ing, this should correspond to a normal crossing singularity of D(3,n)
with 0 crossings. For cubics this is known to be:

( n+2 )

[(n+1)/2])

For example, when n = 2 this gives 4 and when n = 3 we get 10. These
are uniquely given by the famous Cayley surface:

1 1
(IL‘O"'I‘g (— + et —) = O) c ].:)3
To T3

and the Segre cubic threefold:

5 5
(fo’ = le =0) cP'cPs.
=0

=0 %
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